Yeast RAD2, a homolog of human XPG, plays a key role in the regulation of the cell cycle and actin dynamics

نویسندگان

  • Mi-Sun Kang
  • Sung-Lim Yu
  • Ho-Yeol Kim
  • Choco Michael Gorospe
  • Byung Hyune Choi
  • Sung Haeng Lee
  • Sung-Keun Lee
چکیده

Mutations in the human XPG gene cause Cockayne syndrome (CS) and xeroderma pigmentosum (XP). Transcription defects have been suggested as the fundamental cause of CS; however, defining CS as a transcription syndrome is inconclusive. In particular, the function of XPG in transcription has not been clearly demonstrated. Here, we provide evidence for the involvement of RAD2, the Saccharomyces cerevisiae counterpart of XPG, in cell cycle regulation and efficient actin assembly following ultraviolet irradiation. RAD2 C-terminal deletion, which resembles the XPG mutation found in XPG/CS cells, caused cell growth arrest, the cell cycle stalling, a defective α-factor response, shortened lifespan, cell polarity defect, and misregulated actin-dynamics after DNA damage. Overexpression of the C-terminal 65 amino acids of Rad2p was sufficient to induce hyper-cell polarization. In addition, RAD2 genetically interacts with TPM1 during cell polarization. These results provide insights into the role of RAD2 in post-UV irradiation cell cycle regulation and actin assembly, which may be an underlying cause of XPG/CS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel link of Mediator with DNA repair

Transcription is one of the key biological functions of the cell. A tight regulation of this process is extremely important for cell physiology. It is now generally accepted that a large protein complex, the Mediator of transcription regulation, is essential for eukaryotic transcription by RNA polymerase II (Pol II) in response to transcription activators. Unsurprisingly, Mediator has been impl...

متن کامل

Requirement of Yeast RAD2, a Homolog of Human XPG Gene, for Efficient RNA Polymerase II Transcription Implications for Cockayne Syndrome

In addition to xeroderma pigmentosum, mutations in the human XPG gene cause early onset Cockayne syndrome (CS). Here, we provide evidence for the involvement of RAD2, the S. cerevisiae counterpart of XPG, in promoting efficient RNA polymerase II transcription. Inactivation of RAD26, the S. cerevisiae counterpart of the human CSB gene, also causes a deficiency in transcription, and a synergistic...

متن کامل

Focal Adhesion Kinase (FAK) Involvement in Human Endometrial Remodeling During the Menstrual Cycle

Background: Endometrial remodeling occurs during each menstrual cycle in women. Reports have shown that, in a variety of cell types, processes such as proliferation, signaling complex formation and extra cellular matrix remodeling require a cytoplasmic tyrosine kinase, focal adhesion kinase (FAK). The present study has focused on the expression pattern of FAK in human endometrium during the men...

متن کامل

The single-strand DNA binding activity of human PC4 prevents mutagenesis and killing by oxidative DNA damage.

Human positive cofactor 4 (PC4) is a transcriptional coactivator with a highly conserved single-strand DNA (ssDNA) binding domain of unknown function. We identified PC4 as a suppressor of the oxidative mutator phenotype of the Escherichia coli fpg mutY mutant and demonstrate that this suppression requires its ssDNA binding activity. Saccharomyces cerevisiae mutants lacking their PC4 ortholog Su...

متن کامل

O-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation

Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014